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correct account of actual causation; rather, we argue that standard methods will not
lead to such an account. A different approach is required.

Keywords Actual causationáBayesian networksáCombinatoricsáInterventioná
Intuitions

Once upon a time a hungry wanderer came into a village. He Þlled an iron caul-
dron with water, built a Þre under it, and dropped a stone into the water. ÒI do like
a tasty stone soupÓ he announced. Soon a villager added a cabbage to the pot,
another added some salt and others added potatoes, onions, carrots, mushrooms,
and so on, until there was a meal for all.

1 The theses

One philosophical goal isanalysis: the provision of necessary and sufÞcient condi-
tions for a concept, or for the possession or application of a concept. The Western
historical source of the goal is PlatoÕs discussion of the concept of ÒvirtueÓ in the
Meno, but theMeno is also the source of a method: conjecture an analysis, seek
intuitive counterexamples, reformulate the conjecture to cover the intuitive exam-
ples of the concept and to exclude the intuitive non-examples; repeat if necessary.
Much of contemporary philosophy attempts the same strategy for many concepts:
knowledge, belief, reference, causation, and so on. Addressing analyses of Òrefer-
ence,ÓMallon et al. (in press) argue that psychological investigation suggests that
intuitions about reference are so varied that no uniform analysis can capture the
discrepancies.

Our concern is about analyses of a scientifically and morally important notion,
Òactual causationÓÑabout proposed necessary and sufÞcient conditions for one event
to cause another. For an inference to a general analysis from intuitions about cases
to be credible, more than psychological consensus is required. The intuitive cases
used to justify an analysis must somehow be representative of the possible cases of
actual causation or its absence. What is particularly interesting about Òactual causa-
tionÓ is that the possible cases can in some sense be enumerated, and the enumeration
can be used to show that consideration of intuitive examples is not representative,
and apparently cannot be. Our argument Þrst provides principles for enumerating
the number of possible, structurally isomorphic examples of actual causal relations,
without regard to the content of the related events. We show that even with very
strong equivalence relations, and even considering only the number of events typi-
cal of examples in the philosophical literature, the number of possible cases is quite
large. Second, we note that the number of equivalence classes grows exponentially
as more events are considered. And, third, we show by example that as more events
are added, novel kinds of ambiguous cases, or counterexamples to proposed analyses,
emerge.

The question of when one event or circumstance causes another has been the subject
of two recent collections of philosophical essays, (Dowe and Noordhof 2004; Collins
et al. 2004), of a lengthy chapter in a prize-winning book (Woodward 2003), of a
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connected pair of articles amounting to a short book (Halpern and Pearl 2005a,b), as
well as of several other recent articles (Gilles 2005; Spohn 2005; Hiddleston 2005
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Analyses of actual causation for deterministic cases have assumed that the relation
obtains between values
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graph, there are 24 × 22 = 26 possible truth functions. If we again treat the no-edge
graph as just one case, then there are 601 causal models over the three potential causes.
Since any causal model among the potential causes can be paired with any structure
for the effect, there are 190,517 possible causal models altogether. And the number of
cases (not structures) is much larger: each possible structure corresponds to 2C cases,
where C is number of exogenous (i.e., no parent) variables in that structure. (Until
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Table 1 Numbers of truth
functions

Number of parents Number of
truth functions

Number of truth
functions with test
pairs

1 4 2

2 16 10

3 256 218

4 65,536 64,594

5 > 4 " 10
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Table 2 Counting graphs with
test pairs

Number of graphs of form… × Number of test
pair truth functions
per graph

= Number of
structures

1 disconnected graph 1 1

6 graphs of the form -> 2 12

6 graphs of the form -> -> 2 × 2 = 4 24

3 graphs of the form <- -> 2 × 2 = 4 12

3 graphs of the form -> <- 10 30

6 graphs of the form  -> -> 2 × 10 = 20 120

cases (i.e., 6 possible structures); 10 permissible truth functions for the three two-edge
cases (i.e., 30 possible structures); and 218 test pair truth functions for the single three-
edge case. There are thus 255 possible structures (assuming the test pair condition)
over the three potential causes and effect. Since every structure among the causes is
consistent with every structure between the potential causes and the effect, we have
255×199 = 50, 745 structures on three potential binary causes and one binary effect.
The test pair restriction eliminates nearly 75% of the possible causal models, but that
is not nearly reduction enough for intuition to survey the cases. Moreover, the com-
binatorics rapidly get much worse as the number of potential causes increases. The
“simple” situation of five causes (i.e., all have C → E) with no causal connections
among them, and where we impose the test pair condition, corresponds to more than
4 billion possible structures.

2.2 Unlabeled graphs and other restrictions

We can additionally consider restrictions on the space of possible graphs. The idea
with graphical models is that structure alone is considered, not the names given to
variables or the substantive content of the events. In the absence of specific informa-
tion about the meaning of variables, X → Y is structurally identical to X ← Y . If we
group together directed acyclic graphs that are identical except for the variable names,
then there are only six possible structures over three potential causes:

* * * 
* * *  
*  * * 
* * * 
* * * 
* * * 

The middle column of Table 2 shows the number of test pair truth functions for each
of these six graphs. The counts of structures involving the effect are more complicated
if variable names do not matter. For example, if X → Y ← Z among the potential
causes, then X, Y as the causes of E is equivalent to Z, Y being the causes of E; notice
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Table 3 Counting unlabeled graphs with test pairs

0 causes 1 cause 2 cause 3 cause = Number of
test pair truth
functions for
row structure

* * * 1 2 10 218 231

* → * * 1 3 × 2 3 × 10 218 255

* → * → * 1 3 × 2 3 × 10 218 255

* ← * → * 1 2 × 2 2 × 10 218 243

* → * → * 1 2 × 2 2 × 10 218 243

Three-edge 1 3 × 2 3 × 10 218 255

that X, Z being causes is not equivalent to the other two. Table 3 shows the number of
test pair truth functions for E for all combinations of potential cause structure (rows)
and number of causes of the effect (column). For cells with two numbers, the first
number indicates the number of distinct graphical structures involving the effect when
the potential causes are distinguishable only by their structural role (relative to the
other potential causes).

We can compute the total number of causal models by multiplying the right-most
column of Table 3 by the relevant number of test pair truth functions over the potential
causes, and then summing together. Ignoring variable names, combined with the test
pair condition, results in 10,263 possible causal structures. Smaller, but still a busy
time for intuitions.

We can impose further plausible restrictions on the space of possible graphs, though
they could conflict with some theories of actual causation.7 All of the various accounts
of actual causation agree that C = c cannot be an actual cause of E = e if there is
no directed path from C to E. Moreover, if there is a directed path from C to E, and
there is no directed path from B to E, then whether or not C = c is an actual cause of
E = e cannot depend on whether or not B = b. Various models are thus dispensable or
equivalent with respect to testing an account of actual causation. For example, suppose
E is a function of a single variable and * → * → * holds among the potential causal
variables. The only distinct structure is the one in which E depends on the terminal
star. If E depends on the middle variable, then it is equivalent to ∗ → ∗ · · · ∗ over the
potential causes, since the last variable cannot be an actual cause, and cannot affect
whether the other two variables are actual causes (by the above principles involving
directed paths). If E depends on the first variable, then it replicates a case counted
among those with ∗ · · ·∗ · · · ∗ as the relevant substructure on the causal variables. This
restriction results in 20 distinct graphical structures over the three potential causes and
E, distributed as shown in the central cells of Table 4. The relevant number of test
pairs for the structures among the potential causes (rows) and involving the effect
(columns) are also shown in Table 4.

7 For example, that
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Table 6 Example of truth
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(3) A and B each fire a bullet that would have missed the target, except that the
bullets collide (C = 1) and A’s bullet ricochets through the bullseye. What
caused the bullseye to be hit (D = 1)?

A C    B

D

C = A • B; D = C; A = B = C = D = 1.

W, HP2005: The actual causes of D = 1 are A = 1, B = 1, and C = 1.
(4) A, a perfect marksman, is about to fire at the bullseye; B is about to jostle A

to prevent A from hitting the bullseye; C shoves B out of the way.A fires and
hits the bullseye (D). What caused the bullseye to be hit?

C → B → A → D; D = A; A = (1 − B); B = (12.2881 553.715 l 147.668 556.686 l
n19BT 9. Tf6 3F8.0 1 Tf39.o1 Tf (B)) Tj 0
Tc ET BT 9.9o6i 1 Tf (()iB968.4605 439.584
Tm /F8.0 1CTf (B))6000

;

C =

D= =
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B P T 

P = (1 %B); T = B + P.B = T = 1, P = 0

W, HP2005: The actual cause ofT = 1 isB = 1
(14) A andB
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others will vote: his priors for every vote but his are 50/50 for round-up. No matter
how W votes, cases in which C and R
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description of circumstances. One would like to know whether judgments of actual
causation depend only on the Þnal state or on the transitions that lead to it. One
would like to know in what respects systems are sometimes too complex for people to
give more than random judgments, or none at all. And many other questions remain
unanswered.

There is an enormous psychological literature on human judgment about causation
when the joint occurrences of features are repeated (i.e., about type-level causation),
and about token causation for extremely simple ÒmechanicalÓ cases (e.g., collisions
of objects, inspired byMichotte 1954), but relatively little about actual causation
in other contexts. A study bySloman and Lagnado(2002
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indicators for discovering actual causal relations. Those indicators might provide a
definition of actual causation, but they need not. The justification of a Euclidean
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where a dark node indicates that a local change of state occurred. But the change
(or happening) graph representation has no clear functional dependencies that are
independent of the actual beginning and end states—no laws—and fails to mark the
difference between a change in a node from empty to dark, and a change of that same
node from dark to empty; each kind of change becomes a dark node. The same “change
graph” would also represent this transition:

 … 
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7 Conclusion

Causal Bayes nets developed as a formalism for representing causal relations among
variables and for studying inferences to such relations and their use in predicting the
effects of interventions. That framework is now used more or less without comment in
several areas of science. It was natural enough then to take Bayes nets as a framework
for actual causation, but it is a mistake to take actual causation generally to be iso-
morphic to a relation among values of nodes in such a structure, just as it is a mistake
to induce vast generalizations about conditions for causal attribution from a baker’s
dozen of examples.

Our argument is not for an abandonment of formal representations of actual causa-
tion, or for promulgating more examples without formal control. We are not arguing
for abandoning neuron diagrams or Bayes nets or graphical causal models in philo-
sophical investigations of causal relations. We are not arguing against the possibility of
a correct theory of actual causation. It is instead an argument (i) against the adequacy
of the unsystematic Socratic strategy that has dominated philosophical discussion of
actual causation; (ii) against the sufficiency of Bayes net representations for actual
causation without consideration of state transitions; and (iii) against the presumption
that, in judging cases, philosophers know best.
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